- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Razieh Nabi, Daniel Malinsky (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
- Filter by Editor
-
-
Bernhard Schölkopf, Caroline Uhler (1)
-
Scholkopf, Bernard. (1)
-
Uhler, Caroline (1)
-
Zhang, Kun (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zhang, Kun; Uhler, Caroline; Scholkopf, Bernard. (Ed.)Recently there has been sustained interest in modifying prediction algorithms to satisfy fairness constraints. These constraints are typically complex nonlinear functionals of the observed data distribution. Focusing on the path-specific causal constraints, we introduce new theoretical results and optimization techniques to make model training easier and more accurate. Specifically, we show how to reparameterize the observed data likelihood such that fairness constraints correspond directly to parameters that appear in the likelihood, transforming a complex constrained optimization objective into a simple optimization problem with box constraints. We also exploit methods from empirical likelihood theory in statistics to improve predictive performance by constraining baseline covariates, without requiring parametric models. We combine the merits of both proposals to optimize a hybrid reparameterized likelihood. The techniques presented here should be applicable more broadly to fair prediction proposals that impose constraints on predictive models.more » « less
-
Razieh Nabi, Daniel Malinsky (, Proceedings of the First Conference on Causal Learning and Reasoning)Bernhard Schölkopf, Caroline Uhler (Ed.)Recently there has been sustained interest in modifying prediction algorithms to satisfy fairness constraints. These constraints are typically complex nonlinear functionals of the observed data distribution. Focusing on the path-specific causal constraints, we introduce new theoretical results and optimization techniques to make model training easier and more accurate. Specifically, we show how to reparameterize the observed data likelihood such that fairness constraints correspond directly to parameters that appear in the likelihood, transforming a complex constrained optimization objective into a simple optimization problem with box constraints. We also exploit methods from empirical likelihood theory in statistics to improve predictive performance by constraining baseline covariates, without requiring parametric models. We combine the merits of both proposals to optimize a hybrid reparameterized likelihood. The techniques presented here should be applicable more broadly to fair prediction proposals that impose constraints on predictive models.more » « less
An official website of the United States government

Full Text Available